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Abstract
In the present scenario of worldwide growth in the manufacturing segment, non-traditional machining (NTM) processes are most 
widely used for machining of variety of materials. Amongst these NTM processes, Electrochemical discharge machining (ECDM) has 
been proven as a competent machining process to produce variety of multifaceted shapes efficiently on difficult to machine materials. 
ECDM is a non-conventional machining process that combines electrochemical machining and spark erosion to produce high-
precision parts.  The current article is focused on review of different areas of ECDM including its variants, key domains, sparking 
phenomena, etc. Furthermore, this article also covers outlook of future work in the field of ECDM. Overall, this review article aims to 
provide a comprehensive understanding of ECDM which can help researchers and practitioners to optimize the process and minimize 
its environmental impact.
Keywords: NTM; ECDM; ECM; EDM; Optimization Techniques.

1. INTRODUCTION

Manufacturing processes have been developed since the ‘Stone 
Age’. Machining is a kind of manufacturing processes which 
is classified as conventional and non-conventional machining. 
The conventional process of machining removes material from 
the work piece in variety of chips with the cutting tool harder 
than work piece material. In non-conventional or nontraditional 
machining (NTM) process, removal of material takes place with 
or without chip formation and physical tool may or may not 
be present and tool material is not necessary to be harder than 
work piece material. These nontraditional machining processes 
have paved the way for new expansion in the field of nano 
and micro machining. These processes were industrialized and 
commercialized during the 1980s [1], [2]. The unique features 
of NTM processes such as, high productivity, high accuracy, 
close degree of tolerances etc. has made  them more significant 
and popular in the today’s  manufacturing environment [3]. 
These NTM processes are widely classified according to form of 
energy used like thermal, chemical, electrical, electrochemical, 
sound, light and many more [4]. 

In present era, micromachining is a demanding sector because 
of manufacturing of variety of micro components, such as, 
inkjet nozzles, micro components like sensors, pumps, tools, 
reactors, chips, micro electro mechanical systems (MEMS) and 
many more. These micro components are widely adopted in the 
emerging industrials segments [5], [6]. These micro products 
are fabricated by different conductive materials [7], [8] as well 
as advance non-conductive engineering materials [9]. However, 
it is problematic and challenging task for industrialists to 
achieve high dimensional accuracy using conventional 
machining process. This is because of, hardness, brittleness 
and metallurgical properties of these materials. Some other 

problems may also be reason for complexity in machining, 
such as, cutting tool failure, chattering phenomenon and poor 
surface quality [10]–[13].

To conquer these troubles, NTM processes are the only solution 
and widely adopted by industrialists [14], [15]. These processes 
are, such as, electro chemical machining (ECM), electric 
discharge machining (EDM), wire electric discharge machining 
(WEDM), electron beam machining (EBM), laser beam 
machining (LBM), plasma beam machining (PBM), ultra-sonic 
machining (USM), abrasive water jet machining (AWJM), 
abrasive jet machining (AJM), and many more. Among these 
NTM processes, EDM and ECM processes are identified as the 
most comprehensively accepted and commercialized processes 
used for micro machining because of their ability to fabricate 
intricate shapes on the variety of materials [16], [17]. 

In EDM process mechanism, material removal takes place from 
a progression of sparks produced between anode and cathode 
deeped in a dielectric medium. Between the electrode and the 
work piece, this medium works as a deionizing zone making 
availability of optimized sparks [18], [19]. However, in ECM 
process mechanism, material removal takes place through 
electrolysis process followed by ‘Faraday’s laws of electrolysis’ 
[20], [21].This phenomenon generates replica of the tool on 
the work piece. ECM has broad range of its applicability 
regardless of any limitations of hardness of the material, tool 
wear rate, constraints of material removal rate (MRR), surface 
quality, and stress free and crack free components etc. [22]. It 
has vast applications in different segments, such as, aerospace 
[23], [24], biomedical [25], [26], deburring [27] , energy 
[28]–[32], deep hole machining for automotive applications 
[33]–[35], tribology [36] and this process is more suitable for 
bulk production [37]. Furthermore, it is used for machining of 
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variety of materials including conductive and hard materials, 
like, metals [38]–[40], semiconductors [41]–[43], composites 
[44]–[46] and many more. ECM process uses variety of 
electrolytes including, acidic, basic and neutral solutions [47]. 

However, EDM and ECM processes are commercially 
available and widely adopted number of industries, although, 
there is constraint of machining of only conductive nature of 
materials [48]. Further, EDM have certain issues related to 
surface integrity [49]–[52], MRR, heat affected zone (HAZ) 
and tool wear rate (TWR) [53]–[56]. However, ECM has good 

surface quality with prevention of formation of HAZ, but there 
also exists major issues associated such as decreased MRR and 
dimensional accuracy [57].  

These issues encouraged the researchers to develop such a 
hybrid process which have combined features of individual 
machining process i.e. EDM & ECM into single process and 
resulted in ECDM process [58]–[60]. After thorough analysis, 
a comparative chart has been presented among EDM, ECM and 
ECDM processes by taking into consideration different aspects 
of machining as shown in Table 1.

Table 1. Comparative Chart of EDM, ECM and ECDM

Process EDM ECM ECDM

Sparking mechanism Collapse of dielectric be-
tween the electrodes

 No spark phenomenon takes
place

 Various models proposed by
researchers

Components used for machin-
ing Electrodes and Dielectric Electrodes and Electrolyte Electrodes and Electrolyte

 Material removal mechanism  Melting and vaporization of
 material of work piece

 Electrochemical reaction
 takes place resulting in
anodic dissolution

 Melting and vaporization
 of work piece because of
 the heat generated by ECD
phenomenon

Uses in commercial market Yes Yes No

Level of eco-friendliness High Low Medium

 Nature of work piece material
used Conductive material Conductive material

Conductive, non-conduc-
tive and advance engineer-
ing materials

 Location of discharge Between electrodes No discharge action At smaller electrode

 Thermal induced imperfection Yes No Yes

2. ECDM: A HYBRID MACHINING TECHNOLOGY

Now-a-days, industries are striving for green technology and 
sustainable manufacturing in order to have safer breathing zone 
of the operator [61]. [62], [63]. ECDM has proven to be best 
choice as a ‘Hybrid machining process’ fulfilling these criteria. 
Electrochemical Discharge (ECD) occurrence in ECDM has 
developed as a combination of Electric Discharge (ED) and 
Electro Chemical (EC) phenomenon and having characteristics 
of both processes [64]. 

A general experimental setup of ECDM consists of mainly 
two electrodes i.e. anode and cathode. Tool electrode acts as 
‘cathode’ and auxiliary electrode acts as ‘anode’. An electrolyte 
tank is kept underneath the cathode and the work piece is kept 
below the tool electrode with partial immersion in electrolyte 
upto a few millimeters. A few centimeters gap is kept between 
anode and cathode. 

In order to create electrochemical cell (ECC), DC power is 
supplied over the two electrodes. Further, electrolysis process 
begins because of the potential difference across anode and 
cathode causing development of H2 gas bubbles at cathode tip. 
If applied voltage is fewer than peak voltage, O2 gas bubbles 
are produced at auxiliary electrode. With further increase in 
voltage, bubble growth takes place and coalescence to form a 

gas film acting as an insulation layer for electrolyte and tool 
electrode. As voltage is increased above peak value, spark 
produces at tool electrode. Sparking phenomenon results in 
melting and vaporization of material [65]. The state-of-art 
mechanism of ECDM process is categorized as, (a) electrolyte 
evaporation and bubble formation (b) bubble coalescence 
phenomenon (c) gas film development (d) sparking action and 
(e) machining due to thermal erosion. Further, the detailed flow 
chart of spark occurrence in ECDM is as shown in figure 1.
Figure 1. Flow Chart for spark occurrence in ECDM Process 
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2.1 ECDM Variants: ECDM can be performed in number of 
ways called ‘variants’ of ECDM and these are broadly classified 
as per their principle of operation using electrochemical 
discharges (ECD). These variants are, such as, ECD drilling, 
ECD milling, ECD turning, ECD dressing, wire ECDM, die-
sinking ECDM, ECD trepanning. The classification chart of 
these variants is as shown in Figure 2. 

2.1.1 Electrochemical discharge drilling: This method is 
widely used to produce high quality precise holes. However, 
variety of methods can be used for drilling operation, such 
as, Ultra Sonic Machining (USM) [66]–[69], diamond-wheel 
assisted grinding [65], [70]–[73], Abrasive Jet Machining 
(AJM) [74], [75], Laser Machining (LM) [76]–[79] and many 
more but higher machining cost, expensive equipment, low 
surfaces finish, high power consumption, lower MRR are 
certain limitations which restricts the use of these methods.

Figure 2. ECDM Process Variants [80]

There are number of factors which affect the drilled hole 
quality, depth, overcut and many more hole characteristics. 
These parameters are such as, type of electrolyte, power supply 
conditions, tool electrode etc. that affect sparking action during 
ECDD phenomenon. Initially in 1997, a study firstly focused 
on hole drilling of ceramics because of its increasing demand in 
many industrial and non-industrial applications. The study used 
the concept of ‘Gas-filled electro discharge and electrochemical 
compound machining (GFEECM)’ and claimed high energy 
saving with improved efficiency of the machining process in 
comparison to conventional technologies [81]. During drilling 
of non-conducting materials, ‘Limiting depth’ of hole drilling 
was identified as a major issue for specific range of applied 
voltage and electrolyte conductivity due to some constraints 
[82]–[89]. Focusing at this issue, a number of researchers 
worked for betterment to machine deeper holes with improved 
quality. Researchers have claimed the use of ECDD for 
effective machining of a number of different conductive and 
non-conductive materials. The non-conductive materials 
covered in the previous studies for ECDD are borosilicate glass 
[90]–[92], pyrex glass [93], [94], soda lime glass [95]–[98], 
glass wafers [99], other glass material [59], [82], [90], [100]–
[104], silicon wafers [105], e-glass-fiber-epoxy composite 
[106], zirconia ceramics [66], [107], [108], silicon nitride 
ceramic [109], [110],  alumina ceramic [66], [111]–[113], SiC 
reinforced polymer [114], hybrid polymer matrix composites 
[115], silicon carbide reinforced epoxy composites [116], 
silicon carbide particle matrix composites [117] and many 

more. The conductive materials covered in the previous studies 
for ECDD are metal matrix composites [114], [118], [119], 
steels [120]–[123], super alloys [124], [125], beryllium copper 
alloy [126] and stainless steel [38], [55], [127] and many more.

2.1.2 Electrochemical discharge milling: For fabrication of 
complex 3D microstructures, electrochemical discharge milling 
process has proven to be a best choice of the researchers. Glass 
and quartz material are widely machined by this process. In 
this process, for machining purpose, a rotary cylindrical wheel 
is used which is working as a cathode electrode. TRR and TTR 
are identified as the two major influencing parameters having 
impact on the performance of process. A number of studies 
have been reviewed that adopted this process for fabrication of 
µ-geometries [128]–[130], µ-channels surface texturing [131], 
and µ-grooves [132], [133] etc. 

2.1.3 Electrochemical discharge turning (ECDT): ECDT is 
widely adopted for machining of cylindrical work piece with 
continuous rotation. The work piece revolution is the key 
parameter in ECDT that affects supply of fresh electrolyte 
in inner machining zone, which is responsible for evaluating 
machining performance. Wuthrich et al. studied for machining 
of narrow and deep grooves to identify optimized values of 
rotation rate where improved machining performance can be 
achieved [102]. 

2.1.4 Electrochemical discharge dressing: This process is used 
for worn grinding tool dressing which is the major requirement 
in most of industrial applications [134]. In this process, worn 
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grinding tool acts as cathode and auxiliary electrode acts as 
anode. The worn grinding tool is dipped into electrolyte bath 
and ECD action helps to wear down the wreckage and metallic 
bonds from the worn grinding tool surface and resulting in 
damage free extended bits on the grinding wheel. 

2.1.5 Wire electrochemical discharge machining 
(W-ECDM): W-ECDM is adopted for machining in form of 
slicing of hard and brittle material [111] in which travelling 
wire works as cutting tool (cathode) and fully dipped in the 
electrolyte [135]. There are numerous studies showing the use 
of WECDM for variety of materials, such as, quartz [110], 
ceramics [136], composites [137] and many more.

2.1.6 Die-sinking electrochemical discharge machining 
DS- ECDM is used for manufacturing of small and thin dies 
irrespective of their thermal conductivities. Previous studies 
show that DS-ECDM is widely adopted for both conductive 
[138] and non-conductive [139] materials.  Higher surface 
integrity is observed by DS-ECDM in comparison to ECM and 
EDM.

2.1.7 Electrochemical discharge trepanning: This is a 
kind of deep hole-drilling method, which is modified form 
of ECDD. In this method, an offset is provided between tool 

axis and spindle axis in order to have an orbital motion of tool 
electrode. A study  reported this method as an alternative of 
ECDD to avoid constraint of limiting depth [140]. A study 
employed use of spring fed abrasive electrode by replacing 
gravity fed electrode with pulse DC supply for improvement 
in surface quality and hole depth during ECD trepanning action 
[141]. Through broader analysis of previous studies, it can be 
judged that research fraternity is mainly indulged in evaluating 
machining performance of ECDD process in comparison to 
other variants of ECDM. Only a fewer number of studies have 
shown use of other variants in comparison to ECDD. 

2.2 Significant Areas and Ishikawa Diagram: Research 
trends in the field of ECDM show that there are different areas 
in which researchers are working to carry out some possible 
outcomes in this field. These areas may be in terms of some 
initial inputs, process parameters, in-process identifications 
and many more. Some of the major areas identified from the 
literature survey are as shown in figure 3. There are wide variety 
of influencing parameter that affect the machining performance. 
These parameters have been taken into consideration in 
previous studies by different researchers. Through the survey 
major impacting parameters have been identified and shown by 
Ishikawa diagram, in figure 4.

Figure 3. Key Domains of ECDM
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2.3 Spark Analysis

A huge number of research have been done in the field of 
electrochemical discharges (ECD) and this technique is being 
used for machining of variety of materials as shown in literature 
survey. However, the phenomenon of machining through 
electrochemical discharges is still not clear to researchers 
indulged in this field. Different theories have been presented 
by researchers for proper understanding of this mechanism. 
Electric discharge formation at anode tip was initially observed 
in year 1925, by Taylor [88] and termed it ‘anode effect’. 
After in-depth research in this field for decades, an ECD 
phenomenon was firstly presented in 1968 [82] and named  
as ‘electrical discharge drilling’. However, the study was not 

able to explain the spark generation mechanism clearly. A 
study  reported discharge phenomenon as a result of creation of 
gas layer around the electrode surface [142]respectively. The 
study reported in this paper explores some of the fundamental 
processes which occur during ECAM. Experimental apparatus 
was constructed to enable single pulse discharges to be studied. 
Results are presented for 200 μs pulses between 2 mm diameter 
silver steel electrodes in NaNO3 and NaCl electrolytes over a 
gap range of 10 to 90 μm. Four stages of electrical phenomena 
were distinguished within a pulse: (a. For identifying these 
conclusions and better understanding of discharge process, 
streak photography method was used. However, after all, the 
study was not able to explain causes of spark or discharge 
generation during process.

Figure 4. Ishikawa Diagram for ECDM

Furthermore, a study  [143] explicitly demonstrated about 
spark generation mechanism during ECD and proposed a 
model to estimate peak voltage and current required to begin 
sparking  phenomenon. The study reported spark action as 
similar to ‘switching on/off action’ of an electric switch. The 
study reported that with increment in density of hydrogen 
bubbles, electrolyte heating could be increased which results 
in formation of vapor bubbles. These vapor bubbles limit the 
electrolyte and tool contact by covering the tool surface. Basak 
and Ghosh [144] extended their study to investigate the ECD 
phenomenon and  revealed that machining performance can be 
improved by introducing an accompanying inductance in the 
circuit producing high discharge. A study reported that electric 
discharges is the result of ‘switching phenomenon’ between the 
tool and the electrolyte instead of collapsing the insulating gas 

layers during ECDM process [48]. In contradiction to switching 
phenomenon; a research study described about ‘Arc discharge 
valve theory’ and stated that each bubble is treated as a valve 
that is responsible for generation of the spark in form of an arc 
[145]. They made computations for spark energy and results 
were obtained for diameter of hydrogen gas bubbles.  The study 
concluded that the purpose of valve theory seems to be realistic 
showing good agreement with experimental findings. To 
conclude this theory, it was assumed that the bubbles formation 
occurs inside the electrolyte tank only upto depth of few 
millimeters. However, their detailing was not demonstrated 
regarding arc formation inside the electrolyte solution at deeper 
depths. Another study [146] reported generation of high current 
densities at sharp edges of the tool electrode that initiates spark 
formation.
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Further, for observing spark mechanism, ‘Precolation theory’ 
was proposed in a study  [147] to analyze the development 
and adherence of bubbles during ECDM process. Wuthrich 
and Bleuler [148] in their study reported that, spark generation 
takes place because of coalesce of small bubbles to produce 
larger bubbles forming gas film around the tool electrode. 

3.  OUTLOOK OF FUTURE WORK

As the need of machining of variety of materials continues 
to expand, the researches in this domain are also increasing. 
Although, the recent studies on ECDM process spread out, 
the machining process still needs to be enhanced. In order to 
make ECDM as an effective machining process for variety 
of conductive and non-conductive materials, lots of related 
research could be carried out in the future. The following 
conclusions are drawn in respect of 

‘‘The following conclusions are drawn in respect of ECDM 
to present some futuristic developments and challenges’’ 

In conclusion, ECDM has shown significant potential in 
comparison to ECM and EDM as an advanced manufacturing 
technology that offers unique advantages such as high precision, 
low surface roughness, and the ability to machine complex 
shapes in difficult-to-cut materials. The study of variants 
for ECDM has shown that there are multiple approaches to 
machine the different materials as per the desired dimensions 
and machining operation.  Out of those variables it has been 
observed from the literature survey that ECDD is the most 
widely adopted and useful variant of ECDM. The study of 
variants has also led to a better understanding of the underlying 
mechanisms of the process, which in turn has facilitated the 
development of new and innovative techniques for achieving 
superior machining results. However, there are still challenges 
to be addressed, such as the need for more accurate and reliable 
models for predicting machining outcomes, as well as the 
development of new commercial setups that can withstand the 
extreme conditions of the process. 

Key factors for ECDM have been extensively studied to 
understand their influence on the process performance. From 
literature survey researchers have identified various key 
factors that impact the machining rate, surface finish, and 
accuracy of the process. Through systematic experimentation 
and numerical modeling, significant progress has been made 
in optimizing the machining parameters for achieving better 
performance and efficiency. However, there are still challenges 
to overcome in terms of controlling the complex interactions 
between different machining parameters and their effects on 
the machining outcomes. Further research is needed to refine 
the models used to predict the machining performance, and 
to explore new applications of ECDM in various industries. 
The sparking action has been extensively used to understand 
the electrochemical discharge machining process and its 
mechanisms. However, there is still room for further research 

and development in terms of improving the accuracy and 
reliability of sparking action, as well as developing new and 
advanced methodology. 
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